Some Decomposition Theorems on QTAG-module

نویسندگان

  • M. Zubair Khan
  • G. Varshney
چکیده

It has been observed by different authors that QTAG-modules behave very much like torsion abelian groups. In this paper, in section 3, we characterize quasi-essential submodules (Theorem 3.9) and further find a characterization for an h-pure submodule to be a direct summand (Theorem 3.11). In section 4, we obtained a necessary and sufficient condition for a submodule to be contained in a minimal h-pure submodule (Theorem 4.3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON QUASI h-PURE SUBMODULES OF QTAG-MODULES

Different concepts and decomposition theorems have been done for QTAGmodules by number of authors. We introduce quasi h-pure submodules for QTAG-modules andwe obtain several characterizations for quasih-pure submodules and as a consequence we deduce a result done by Fuchs 1973.

متن کامل

A Note on Elongations of Summable QTAG-Modules

A right module M over an associative ring with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper we find a suitable condition under which a special ω-elongation of a summable QTAG-module by a ( ω +k)-projective QTAG-module is also a summable QTAG-module.

متن کامل

On Some QTAG-Modules

In this paper we study totally projective QTAG-modules and the extensions of bounded QTAG-modules. In the first section we study totally projective modules M/N and M ′/N ′ where N , N ′ are isomorphic nice submodules of M and M ′ respectively. In fact the height preserving isomorphism between nice submodules is extented to the isomorphism from M onto M ′ with the help of Ulm-Kaplansky invariant...

متن کامل

Small Homomorphisms and Large Submodules of QTAG-Modules

A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules.Over the past several years QTAG-modules have been the subject of intense investigation yet there is much to explore.The impetus for these efforts stems from the fact that the rings considered here are almost restriction free....

متن کامل

Upper Basic and Congruent Submodules of QTAG-Modules

The cardinality of the minimal generating set of a module M i.e g(M) plays a very important role in the study of QTAG-Modules. Fuchs [1] mentioned the importance of upper and lower basic subgroups of primary groups. A need was felt to generalize these concepts for modules. An upper basic submodule B of a QTAG-Module M reveals much more information about the structure of M . We find that each ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013